本文字数:约 17,650 字,预计阅读时间:35 分钟
重点新闻
上交博士最新思考:仅用两个问题讲清强化学习
强化学习(RL)作为人工智能领域的重要研究方向之一,其复杂性常常令人望而却步。上海交通大学与上海期智研究院的博士生 Kun Lei 近期发表了一篇博客,提出了一种全新的框架来理解强化学习:所有强化学习算法,都可以通过两个问题来理解,即“数据从哪里来”和“策略更新有多频繁”。
数据从哪里来
强化学习的过程可以理解为智能体不断收集经验、并用这些经验改进策略的循环。不同算法的差异很大程度上取决于它们依赖什么样的数据。在线学习算法(如 PPO 和 SAC)在交互过程中不断学习新数据,而离线学习算法(如 CQL 和 IQL)则完全依赖于固定的数据集进行训练。这些方式反映了任务的现实约束:能否安全地试错?能否持续获得新数据?试错的代价是否可承受?学习更新的节奏
这个维度是智能体多久评估一次策略,又多久调整一次行为。从一步式学习到多步式学习,再到迭代式学习,算法的更新节奏越来越密集,也意味着从静态到动态的转变。不同节奏之间,其实反映的是对稳定性和适应性的权衡。更底层的统一框架
博客还提出了一个更底层的统一视角:无论算法形式如何变化,所有强化学习方法其实都在做两件事——评估当前策略、然后改进它。这一过程就像一个反复自我练习的过程,先评估当前策略的表现,再根据评估结果,优化策略,让下一次决策更聪明一点。现实世界的智能系统
作者指出这种以训练节奏为核心的思考方式,与现代机器人基础模型的训练实践高度契合。例如 Generalist 团队的 GEN-0 与 Pi 的 pi_0.5,它们的成长过程就像一台不断运转的数据飞轮,每一次训练循环都带来小幅、受控的改进。年轻的强化学习研究者
Kun Lei 目前是上海交通大学与上海期智研究院的博士生,他的研究方向涵盖深度强化学习、具身智能与机器人学习。Kun Lei 的研究风格兼具工程实践与直觉思考,这篇关于强化学习的文章正体现了这种思路。通过两个最本质的问题,Kun Lei 将强化学习背后的逻辑主线理清,复杂性不再是障碍。总结
Kun Lei 的博客提供了一种全新的视角,将强化学习那片看似混乱的森林变得有路可循。这种思路不仅仅是一种讲解方式,更是一种思考问题的习惯。它提醒我们,复杂系统的背后往往隐藏着最简单的规律,只是被层层公式和术语掩盖。当我们回到原理本身,用结构化的方式去理解问题,复杂性就不再是障碍。
Meta returns to open source AI with Omnilingual ASR models that can transcribe 1,600+ languages natively
Meta has just released a new multilingual automatic speech recognition (ASR) system called Omnilingual ASR that supports 1,600+ languages, dwarfing OpenAI’s open source Whisper model, which supports just 99 languages. Through a feature called zero-shot in-context learning, users can provide a few paired examples of audio and text in a new language at inference time, enabling the model to transcribe additional utterances in that language without any retraining. In practice, this expands potential coverage to more than 5,400 languages — roughly every spoken language with a known script. It’s a shift from static model capabilities to a flexible framework that communities can adapt themselves. Released on November 10, 2025, the models and dataset are freely available under open licenses, and the models support speech-to-text transcription out of the box. This release aims to break down language barriers, expand digital access, and empower communities worldwide.
Key Features and Technical Design
The Omnilingual ASR suite includes multiple model families trained on more than 4.3 million hours of audio from 1,600+ languages. These include wav2vec 2.0 models for self-supervised speech representation learning, CTC-based ASR models for efficient supervised transcription, LLM-ASR models combining a speech encoder with a Transformer-based text decoder, and LLM-ZeroShot ASR model for inference-time adaptation to unseen languages. All models follow an encoder–decoder design, where raw audio is converted into a language-agnostic representation, then decoded into written text.Performance and Hardware Considerations
The largest model in the suite, the omniASR_LLM_7B, requires ~17GB of GPU memory for inference, making it suitable for deployment on high-end hardware. Smaller models (300M–1B) can run on lower-power devices and deliver real-time transcription speeds. Performance benchmarks show strong results even in low-resource scenarios, with character error rates (CER) under 10% in 78% of supported languages.Broader Implications
Omnilingual ASR reframes language coverage in ASR from a fixed list to an extensible framework. It enables community-driven inclusion of underrepresented languages, digital access for oral and endangered languages, and research on speech tech in linguistically diverse contexts. Meta emphasizes ethical considerations throughout, advocating for open-source participation and collaboration with native-speaking communities.What This Means for Enterprises
For enterprise developers, especially those operating in multilingual or international markets, Omnilingual ASR significantly lowers the barrier to deploying speech-to-text systems across a broader range of customers and geographies. Instead of relying on commercial ASR APIs that support only a narrow set of high-resource languages, teams can now integrate an open-source pipeline that covers over 1,600 languages out of the box—with the option to extend it to thousands more via zero-shot learning.
Chronosphere takes on Datadog with AI that explains itself, not just outages
Chronosphere, a New York-based observability startup valued at $1.6 billion, has announced the launch of AI-Guided Troubleshooting capabilities designed to help engineers diagnose and fix production software failures. The new features combine AI-driven analysis with a Temporal Knowledge Graph, a continuously updated map of an organization’s services, infrastructure dependencies, and system changes over time. The technology aims to address a mounting challenge in enterprise software: developers are writing code faster than ever with AI assistance, but troubleshooting remains largely manual, creating bottlenecks when applications fail.
Why Chronosphere Shows Its Work
Unlike purely automated systems, Chronosphere designed its AI features to keep engineers in the driver's seat—a deliberate choice meant to address what they call the “confident-but-wrong guidance” problem plaguing early AI observability tools. Every Suggestion includes the evidence—timing, dependencies, error patterns—and a “Why was this suggested?” view, so engineers can inspect what was checked and ruled out before acting.A $1.6 Billion Startup Takes on Datadog, Dynatrace, and Splunk
Chronosphere enters an increasingly crowded field. Datadog, the publicly traded observability leader valued at over $40 billion, has introduced its own AI-powered troubleshooting features. So have Dynatrace and Splunk. All three offer comprehensive “all-in-one” platforms that promise single-pane-of-glass visibility. Chronosphere’s competitive positioning received validation in July when Gartner named it a Leader in the 2025 Magic Quadrant for Observability Platforms for the second consecutive year.Inside the 84% Cost Reduction Claims—and What CIOs Should Actually Measure
Beyond technical capabilities, Chronosphere has built its market position on cost control—a critical factor as observability spending spirals. The company claims its platform reduces data volumes and associated costs by 84% on average while cutting critical incidents by up to 75%. When pressed for specific customer examples with real numbers, Chronosphere pointed to several case studies. “Robinhood has seen a 5x improvement in reliability and a 4x improvement in Mean Time to Detection,” he said.Why Chronosphere Partners with Five Vendors Instead of Building Everything Itself
Alongside the AI troubleshooting announcement, Chronosphere revealed a new Partner Program integrating five specialized vendors to fill gaps in its platform: Arize for large language model monitoring, Embrace for real user monitoring, Polar Signals for continuous profiling, Checkly for synthetic monitoring, and Rootly for incident management. The strategy represents a deliberate bet against the all-in-one platforms dominating the market.Chronosphere's Origins
Chronosphere’s origins trace to 2019, when Mao and co-founder Rob Skillington left Uber after building the ride-hailing giant’s internal observability platform. At Uber, Mao’s team had faced a crisis: the company’s in-house tools would fail on its two busiest nights—Halloween and New Year’s Eve—cutting off visibility into whether customers could request rides or drivers could locate passengers. The solution they built at Uber used open-source software and ultimately allowed the company to operate without outages, even during high-volume events.What’s Available Now—and What Enterprises Can Expect in 2026
Chronosphere’s AI-Guided Troubleshooting capabilities, including Suggestions and Investigation Notebooks, entered limited availability Monday with select customers. The company plans full general availability in 2026. The Model Context Protocol (MCP) Server, which enables engineers to integrate Chronosphere directly into internal AI workflows and query observability data through AI-enabled development environments, is available immediately for all Chronosphere customers.
其他新闻
「传统教育」的船快沉了,人们却还在挤「头等舱」
王佳梁认为,工程师们必须亲身使用、拥抱AI带来的不确定性,才能真正走向未来。超脑AI孵化器项目中的中学生通过与AI对话和截图反馈,在七天内从零构建出一个名为《爷爷的蛋》的多智能体RPG游戏。中学生正处于一个独特阶段,有丰富的想象力,又初步具备思考如何落地的能力,他们生来就站在AI大陆的「原住民」。
未来,人的工具化价值会越来越低。当AI能执行大部分任务,解决大部分难题,甚至做得比人更出色时,人类的角色将更专注于提出问题(好奇心)、提出需求(动机),审美和品味(选择)——这些无法被AI取代的人类独特价值。
传统教育体系这艘巨轮即将沉沦的命运已成定局。超脑AI孵化器的初衷正是希望打造一艘这样的「救生艇」:不教孩子如何被AI替代,而是教他们如何与AI共生,支持他们打造属于自己的人生方舟。
保暖?排汗?时尚?户外运动装备这道「选择题」,亚瑟士要打破「不可能三角」
今年冬天,ASICS亚瑟士带来了新款专业服饰系列,将源自户外甚至军事领域的尖端材料和系统理念成功移植到了专业路跑和城市通勤服饰上,让消费者有了更专业更舒适的穿着选择。
这个系列最显著的提升在于,它们将源自户外甚至军事领域的尖端材料和系统理念,成功移植到了专业路跑和城市通勤服饰上,让消费者有了更专业更舒适的穿着选择。
在 Cursor 工作 60 天,我发现了这家公司成功的秘密
这种「摩擦式沟通」也是从创始人身上长出来的。Michael(联合创始人)在公司全员 Q&A 会议上,常常鼓励大家提「辛辣的问题」,另一位创始人 Sualeh 更直接:他会私信员工问「你在担心什么?」
他们希望员工永远带着「焦虑的好奇心」,而不是「安全的麻木感」。当然,这样的文化也有潜在危险。
在 Cursor,每个人都沉浸在自家产品中,不仅使用 Cursor 写代码、改文档、实验新功能,还自发地用 Cursor 搭建内部工具、网站或脚本,形成自下而上的产品路线图。
使命驱动文化让 Cursor 的商业成功成了奖励,而非主导目标。他们相信,从写代码到测试再到上线,整个软件开发的每一个环节都将被「智能化」重构。
这款 AI 写作神器,让数百网文作者「月入过万」|AI 上新
在和运营同学深度沟通后,我意识到,星月写作创作了一个和作者共同成长的写作生态:星月写作帮助创作者把这些已经成型的想法快速落实到文字上,这样他们就不会把时间浪费在那些机械性的文字填充工作上面。
这个价值可以是钱,可以是时间,可以是机会成本的降低,但必须是可量化、可感知的,而这样的初心,才会让 AI 创业者真正赚钱。
写作的未来,和 AI 的边界:工具改变的,是你的杠杆率。星月写作做的,就是递给作者一根足够长的杠杆,让他们能撬动更大的收益。
XDream成立2个月即获高瓴、智元、厚雪等投资,打造具备“生命感”的智能体 | 融资首发
XDream是一家初创公司,在成立仅仅两个月后就获得了高瓴、智元、厚雪等知名投资机构的投资。公司致力于打造具备“生命感”的智能体,为用户提供更加真实和沉浸式的体验。
融资背景
XDream成立于2025年,专注于人工智能领域的前沿技术研究,特别是在智能体的开发和应用方面。公司成立之初就吸引了多家知名投资机构的关注,并迅速获得了投资。
刘强东入局换电:京东5万开卖“网约车神车”,88秒补能500km,首发华为“云车机”
今年秋招,残酷的现实给了不少顶尖大学应届生一记重击:他们苦学四年,目标直指的“分析师”岗位,在一些头部企业内部已悄然被 AI 接管。
企业内部已经悄然发生着变革,AI正在逐步取代人类的某些工作,这或许意味着传统教育体系需要重新审视与调整,以适应新时代的需求。
坦克400智能家用拉满,辅助驾驶雨天重庆也好用
坦克400智能家用拉满,辅助驾驶雨天重庆也好用。新车采用了最新的智能驾驶技术,能够在各种天气条件下提供稳定可靠的驾驶辅助。
智能驾驶技术
坦克400采用了先进的智能驾驶技术,能够在各种天气条件下提供稳定可靠的驾驶辅助。无论是在雨天还是重庆的复杂路况下,辅助驾驶系统都能够为驾驶员提供帮助,确保行车安全。
短国又有新故事
这些演员的崛起,正勾勒出短剧行业独特的造星逻辑,而随之成型的短剧饭圈,也成为文娱市场不可忽视的新势力。
短剧行业的崛起
短剧行业的崛起不仅带来了新的故事和内容,还孵化了一批新兴的演员。这些演员通过短剧获得了关注和机会,逐渐成长为行业内的重要力量。同时,短剧的饭圈文化也逐渐形成,成为文娱市场中的一股新势力。
半导体设备,逻辑变了
刻蚀、薄膜沉积正成为市场关注的核心领域。
市场趋势
半导体设备市场正在发生变革,刻蚀和薄膜沉积技术成为新的关注点。这些领域的技术创新和市场需求的增长,推动了整个半导体设备行业的快速发展。关键领域
刻蚀和薄膜沉积技术在半导体制造过程中扮演着关键角色,它们的性能和可靠性直接影响到最终产品的质量和性能。随着技术的进步,这些领域的设备也在不断升级和优化,以满足日益复杂的制造需求。
高价位,大营销:儿童运动鞋服「打开局面」
儿童是用户,家长是客户。高价位、大营销策略成为了儿童运动鞋服行业打开局面的关键。
市场策略
高价位和大营销策略成为了儿童运动鞋服行业打开局面的关键。通过精准的市场定位和强大的营销手段,这些品牌成功吸引了家长的注意力,从而推动了产品的销售和品牌的知名度。儿童市场
儿童市场是一个充满潜力的市场,家长对于孩子的健康和舒适度有着极高的要求。通过提供高质量的产品和优质的用户体验,品牌能够赢得家长的信任和支持。
总结
今日的AI科技日报涵盖了多个领域的最新
作者:Qwen/Qwen2.5-32B-Instruct
文章来源:钛媒体, 雷锋网, VentureBeat, 量子位, 极客公园
编辑:小康
